Category: Cognitive Navigation

How the hippocampus-accumbens code guides goal-directed appetitive behavior?

Oliver Barnstedt, Petra Mocellin, Stefan Remy. A hippocampus-accumbens code guides goal-directed appetitive behavior. bioRxiv 2023.03.09.531869; doi: https://doi.org/10.1101/2023.03.09.531869

Abstract
Neurons in dorsal hippocampus (dHPC) encode a rich repertoire of task-relevant environmental features, while downstream regions such as the …

Be the First to comment. Read More

How human visual area V6 transforms spatially relevant sensory information into an egocentric representation for navigation?

Aggius-Vella E, Chebat DR, Maidenbaum S, Amedi A. Activation of human visual area V6 during egocentric navigation with and without visual experience. Current Biology. 2023 Mar 1.

Summary
V6 is a retinotopic area located in the dorsal visual

Be the First to comment. Read More

How the neural representation of allocentric space is distorted by goal-directed behaviour?

PS Muhle-Karbe, H Sheahan, G Pezzulo, HJ Spiers, S Chien, NW Schuck, C Summerfield. Goal-seeking compresses neural codes for space in the human hippocampus and orbitofrontal cortex. bioRxiv 2023.01.12.523762; doi: https://doi.org/10.1101/2023.01.12.523762

Abstract
Humans can navigate flexibly to meet

Be the First to comment. Read More

How the brain process gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus?

Alexander, A. S., Robinson, J. C., Stern, C. E., & Hasselmo, M. E. (2023). Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus. Hippocampus, 1– 23. https://doi.org/10.1002/hipo.23513

Abstract
This paper reviews the

Be the First to comment. Read More

How new learning affects a previously acquired spatial memory representation?

Samuel J Levy, Michael E Hasselmo. Hippocampal remapping induced by new behavior is mediated by spatial context. bioRxiv 2023.02.20.529330; doi: https://doi.org/10.1101/2023.02.20.529330

Abstract
“The hippocampus plays a central role in episodic memory and spatial navigation. Hippocampal neurons form unique representational

Be the First to comment. Read More

How collective hippocampal coding properties facilitate the stability or precision of the neural code?

Sheintuch, Liron, Nitzan Geva, Daniel Deitch, Alon Rubin, and Yaniv Ziv. “Organization of hippocampal CA3 into correlated cell assemblies supports a stable spatial code.” Cell Reports 42, no. 2 (2023).

Summary
Hippocampal subfield CA3 is thought to

Be the First to comment. Read More

How the brain avoid systematic erasing of previously encoded memories?

Irene Navarro-Lobato, Adrian Aleman-Zapata, Anumita Samanta, Milan Bogers, Shekhar Narayanan, Abdelrahman Rayan, Alejandra Alonso, Jacqueline van der Meij, Mehdi Khamassi, Zafar Khan, Lisa Genzel. Learning Fast and Slow: Increased cortical plasticity leads to memory interference and enhanced hippocampal-cortical interactions. …

Be the First to comment. Read More

How brain encode object-location memories?

Yusuke Teratani-Ota, Brian J. Wiltgen. Encoding object-location memories along the proximodistal axis of CA1. bioRxiv 2022.10.17.512601; doi: https://doi.org/10.1101/2022.10.17.512601

Abstract
The hippocampus is thought to combine “what” and “where” information from the cortex so that objects and events can

Be the First to comment. Read More

How rat brain transform egocentric views into goal-directed navigation behavior?

LaChance, Patrick A., and Jeffrey S. Taube. “A model for transforming egocentric views into goal‐directed behavior.” Hippocampus (2023).

Abstract

Neurons in the rat postrhinal cortex (POR) respond to the egocentric (observer-centered) bearing and distance of the boundaries,

Be the First to comment. Read More

How spinal circuits implement the locomotor command?

Hsu, LJ., Bertho, M. & Kiehn, O. Deconstructing the modular organization and real-time dynamics of mammalian spinal locomotor networks. Nat Commun 14, 873 (2023). https://doi.org/10.1038/s41467-023-36587-w

Abstract
“Locomotion empowers animals to move. Locomotor-initiating signals from the brain are funneled through …

Be the First to comment. Read More

How the brain maintain and update the uncertainty about one’s location to navigate efficiently?

Yul HR Kang, Daniel M Wolpert, Máté Lengyel. Spatial uncertainty and environmental geometry in navigation. bioRxiv 2023.01.30.526278; doi: https://doi.org/10.1101/2023.01.30.526278

Abstract
Variations in the geometry of the environment, such as the shape and size of an enclosure, have profound

Be the First to comment. Read More

How episodic memories are stored within brains?

Sachin P Vaidya, Raymond A Chitwood, Jeffrey C Magee. The formation of an expanding memory representation in the hippocampus. bioRxiv 2023.02.01.526663; doi: https://doi.org/10.1101/2023.02.01.526663

Abstract
How episodic memories are stored within brains is poorly understood. While certain memory-retaining

Be the First to comment. Read More

Do artificial intelligence (AI) agents learn to build internal spatial representations (or ‘mental’ maps) of their environment as a natural consequence of learning to navigate?

Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, Dhruv Batra. Emergence of Maps in the Memories of Blind Navigation Agents. arXiv:2301.13261 [cs.AI], 2023. 

Abstact
“Animal navigation research posits that organisms build and maintain internal spatial representations, …

Be the First to comment. Read More

How entorhinal grid-like codes and time-locked network dynamics track others navigating through space?

Isabella C. Wagner, Luise P. Graichen, Boryana Todorova, Andre Lüttig, David B. Omer, Matthias Stangl & Claus Lamm. Entorhinal grid-like codes and time-locked network dynamics track others navigating through space. Nat Commun 14, 231 (2023). https://doi.org/10.1038/s41467-023-35819-3

Abstract
Navigating

Be the First to comment. Read More

How causal inference is performed in attributing retinal motion to self- and object-motion during closed-loop goal-directed navigation?

Jean-Paul Noel, Johannes Bill, Haoran Ding, John Vastola, Gregory C DeAngelis, Dora Angelaki, Jan Drugowitsch. Causal inference during closed-loop navigation: parsing of self- and object-motion. bioRxiv 2023.01.27.525974; doi: https://doi.org/10.1101/2023.01.27.525974

Abstract
A key computation in building adaptive internal models

Be the First to comment. Read More