State estimation in high dimensional space is a big challenge problem. Commonly, we use Lie group to implement 6DoF state estimation in 3D space. However, how does the brain implement path integration in 3D space based on neural dynamics?
Low …
Finkelstein, Arseny, Nachum Ulanovsky, Misha Tsodyks, and Johnatan Aljadeff. “Optimal dynamic coding by mixed-dimensionality neurons in the head-direction system of bats.” Nature communications 9, no. 1 (2018): 3590.
Abstract:
Ethologically relevant stimuli are often multidimensional. In many brain …
Lea Steffen, Daniel Reichard, Jakob Weinland, Jacques Kaiser, Arne Roennau and Rüdiger Dillmann. Neuromorphic Stereo Vision: a Survey of Bio-inspired Sensors and Algorithms. Front. Neurorobot. | doi: 10.3389/fnbot.2019.00028
Anstract: Any visual sensor, whether artificial or biological, maps the 3D-world …
Klukas, Mirko, Marcus Lewis, and Ila Fiete. “Flexible representation and memory of higher-dimensional cognitive variables with grid cells.” bioRxiv (2019): 578641.
The following content is from Klukas 2019.
Grid cell representations are simultaneously flexible and powerful yet rigid …
The following are some key references about 3D state estimation, 3D motion, 3D pose graph optimization.
Solà, Joan, Jeremie Deray, and Dinesh Atchuthan. “A micro Lie theory for state estimation in robotics.” arXiv preprint arXiv:1812.01537 (2018).
In this …
NeuroSLAM: Neural Simultaneous Localization and Mapping Workshop
Simultaneous Localization and Mapping (or SLAM) refers to the problem of constructing a map of an unknown environment as it is actively being explored. SLAM has been treated extensively in mobile robotics, providing …
J. Dupeyroux et al. 2019 presents a navigation system inspired by desert ants’ navigation behavior, which requires precise and robust sensory modalities.
They tested several ant-inspired solutions to outdoor homing navigation problems on a legged robot using two optical sensors …
Brain Inspired Navigation Blog
New discovery worth spreading on brain-inspired navigation in neurorobotics and neuroscience