Category: Neural Basis of Navigation

How does the brain’s compass system work in insects and mammals?

Hulse, Brad K., and Vivek Jayaraman. “Mechanisms Underlying the Neural Computation of Head Direction.” Annual Review of Neuroscience 43 (2019).

Abstract

Many animals use an internal sense of direction to guide their movements through the world. …

Be the First to comment. Read More

How does the brain process the scale from a computational perspective?

Nicolai Waniek. Transition Scale-Spaces: A Computational Theory for the Discretized Entorhinal Cortex. Neural Computation 2020 32:2, 330-394

Abstract

“Although hippocampal grid cells are thought to be crucial for spatial navigation, their computational purpose remains disputed. Recently, they were proposed …

Be the First to comment. Read More

How to achieve stable dynamics in neural circuits?

Leo Kozachkov, Mikael Lundqvist, Jean-Jacques Slotine, Earl K. Miller. Achieving stable dynamics in neural circuits. bioRxiv 2020.01.17.910174;  doi: https://doi.org/10.1101/2020.01.17.910174

Abstract
“The brain consists of many interconnected networks with time-varying, partially autonomous activity. There are multiple sources of noise and

Be the First to comment. Read More

How an ant navigates the desert?

Rüdiger Wehner. Desert Navigator: The Journey of an Ant [M]. Harvard University Press, 2020.

About the Book

“A world-renowned researcher of animal behavior reveals the extraordinary orienteering skills of desert ants, offering a thrilling account of the sophisticated ways insects

Be the First to comment. Read More

How the human brain codes for current remote spatial target locations?

Tsitsiklis, Melina, Jonathan Miller, Salman E. Qasim, Cory S. Inman, Robert E. Gross, Jon R. Willie, Elliot H. Smith et al. “Single-neuron representations of spatial memory targets in humans.” BioRxiv (2019): 523753.

Highlights
• Epilepsy patients performed a …

Be the First to comment. Read More

Whether self‐reported navigation ability is related to information transfer between optic flow‐sensitive (OF‐sensitive) cortical regions and regions important to navigation during environmental spatial tasks?

Zajac, Lauren, Heather Burte, Holly A. Taylor, and Ronald Killiany. “Self‐reported navigation ability is associated with optic flow‐sensitive regions’ functional connectivity patterns during visual path integration.” Brain and behavior 9, no. 4 (2019): e01236.

Abstract
Introduction
“Spatial navigation …

Be the First to comment. Read More

How the running speed modulates the firing rate of the place cells?

McClain, Kathryn et al “Position–theta-phase model of hippocampal place cell activity applied to quantification of running speed modulation of firing rate.” Proceedings of the National Academy of Sciences (2019): 201912792. Web. 20 Dec. 2019.

Significance
“The hippocampus is …

Be the First to comment. Read More

How do backward walking ants cope with navigational uncertainty?

Sebastian Schwarz, Leo Clement, Evripides Gkanias, Antoine Wystrach. How do backward walking ants (Cataglyphis velox) cope with navigational uncertainty? bioRxiv 2019.12.16.877704; doi: https://doi.org/10.1101/2019.12.16.877704

ABSTRACT
“Current opinion in insect navigation assumes that animals need to align with the goal direction to …

Be the First to comment. Read More

What could be the computational benefits of such a mapping between intrinsic dynamical structure and external sensory inputs for navigation in the brain?

Christian Leibold. A Model for Navigation in Unknown Environments Based on a Reservoir of Hippocampal Sequences
bioRxiv 2019.12.18.880583; doi: https://doi.org/10.1101/2019.12.18.880583

Abstract
“Hippocampal place cell populations are activated in sequences on multiple time scales during active behavior, resting and sleep …

Be the First to comment. Read More

How to conduct a quantitative comparison of machine learning and statistical model-based decoding methods on HD cell activity?

Xu Z, Wu W, Winter SS, Mehlman ML, Butler WN, Simmons CM, Harvey RE, Berkowitz LE, Chen Y, Taube JS, Wilber AA and Clark BJ (2019) A Comparison of Neural Decoding Methods and Population Coding Across Thalamo-Cortical Head Direction Cells

Be the First to comment. Read More

How the grid cells perform path integral, path planning and error correction?

Gao, Ruiqi & Xie, Jianwen & Zhu, Song & Wu, Yingnian.  Learning Grid Cells as Vector Representation of Self-Position Coupled with Matrix Representation of Self-Motion. ICLR 2019

Abstract

This paper proposes a representational model for grid cells. In

Be the First to comment. Read More

How the Human Brain Perform the Retrieval of Large-Scale Spatial Environments?

Derek J. Huffman, Arne D. Ekstrom, A Modality-Independent Network Underlies the Retrieval of Large-Scale Spatial Environments in the Human Brain, Neuron, Volume 104, Issue 3, 2019, Pages 611-622.e7, ISSN 0896-6273, https://doi.org/10.1016/j.neuron.2019.08.012.

Abstract
In humans, the extent to which

Be the First to comment. Read More

How rats explored a layered pyramid placed in a large open field?

Hagbi, Z., Dorfman, A., Blumenfeld-Lieberthal, E. et al. “It’s all in their head”: hierarchical exploration of a three-dimensional layered pyramid in rats. Anim Cogn (2019). https://doi.org/10.1007/s10071-019-01332-8

Abstract
Wayfinding in a three-dimensional (3D) environment is intricate, and surface-bounded animals

Be the First to comment. Read More

What’s the effect of the differences on the dynamics of the heading direction circuit of two insect species

Ioannis Pisokas, Stanley Heinze, Barbara Webb. The heading direction circuit of two insect species.  bioRxiv 854521; doi: https://doi.org/10.1101/854521

Abstract
Recent studies of the Central Complex in the brain of the fruit fly Drosophila melanogaster have identified neurons with localised

Be the First to comment. Read More

How the human brain encodes allocentric boundary and goal direction information?

Shine, J.P., Valdés-Herrera, J.P., Tempelmann, C. et al. Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculumNat Commun 10, 4004 (2019) doi:10.1038/s41467-019-11802-9

Abstract
“In rodents, cells in the medial entorhinal cortex (EC) …

Be the First to comment. Read More