How to translate complex attractor networks into spiking networks for rubust neuromorphic computing?

E. Paxon Frady, Friedrich T. Sommer. Robust computation with rhythmic spike patterns. Proceedings of the National Academy of Sciences Sep 2019, 116 (36) 18050-18059; DOI: 10.1073/pnas.1902653116

Significance
“This work makes 2 contributions. First, we present a neural network model of associative memory that stores and retrieves sparse patterns of complex variables. This network can store analog information as fixed-point attractors in the complex domain; it is governed by an energy function and has increased memory capacity compared to early models. Second, we translate complex attractor networks into spiking networks, where the timing of the spike indicates the phase of a complex number. We show that complex fixed points correspond to stable periodic spike patterns. It is demonstrated that such networks can be constructed with resonate-and-fire or integrate-and-fire neurons with biologically plausible mechanisms and be used for robust computations, such as image retrieval.”

Abstract
“Information coding by precise timing of spikes can be faster and more energy efficient than traditional rate coding. However, spike-timing codes are often brittle, which has limited their use in theoretical neuroscience and computing applications. Here, we propose a type of attractor neural network in complex state space and show how it can be leveraged to construct spiking neural networks with robust computational properties through a phase-to-timing mapping. Building on Hebbian neural associative memories, like Hopfield networks, we first propose threshold phasor associative memory (TPAM) networks. Complex phasor patterns whose components can assume continuous-valued phase angles and binary magnitudes can be stored and retrieved as stable fixed points in the network dynamics. TPAM achieves high memory capacity when storing sparse phasor patterns, and we derive the energy function that governs its fixed-point attractor dynamics. Second, we construct 2 spiking neural networks to approximate the complex algebraic computations in TPAM, a reductionist model with resonate-and-fire neurons and a biologically plausible network of integrate-and-fire neurons with synaptic delays and recurrently connected inhibitory interneurons. The fixed points of TPAM correspond to stable periodic states of precisely timed spiking activity that are robust to perturbation. The link established between rhythmic firing patterns and complex attractor dynamics has implications for the interpretation of spike patterns seen in neuroscience and can serve as a framework for computation in emerging neuromorphic devices.”

E. Paxon Frady, Friedrich T. Sommer. Robust computation with rhythmic spike patterns. Proceedings of the National Academy of Sciences Sep 2019, 116 (36) 18050-18059; DOI: 10.1073/pnas.1902653116