Tag: Grid Cells

How can navigation in cluttered environments be supported by utilizing a combination of grid cell-driven vector navigation, place cell-driven topological navigation, and border cell-driven local obstacle avoidance?

Edvardsen, V, Bicanski, A, Burgess, N. Navigating with grid and place cells in cluttered environments. Hippocampus. 2020; 30: 220– 232. https://doi.org/10.1002/hipo.23147

Abstract
“Hippocampal formation contains several classes of neurons thought to be involved in navigational processes, in particular place …

Be the First to comment. Read More

How do grid cells encode local head direction?

Klara Gerlei, Jessica Passlack, Ian Hawes, Brianna Vandrey, Holly Stevens, Ioannis Papastathopoulos, Matthew F. Nolan. Grid cells encode local head direction. bioRxiv 681312; doi: https://doi.org/10.1101/681312

Abstract
Grid and head direction codes represent cognitive spaces for navigation and memory

Be the First to comment. Read More

How does the brain process the scale from a computational perspective?

Nicolai Waniek. Transition Scale-Spaces: A Computational Theory for the Discretized Entorhinal Cortex. Neural Computation 2020 32:2, 330-394

Abstract

“Although hippocampal grid cells are thought to be crucial for spatial navigation, their computational purpose remains disputed. Recently, they were proposed …

Be the First to comment. Read More

Whether speed and head direction signals provide invariant self-motion signals across environments or change their coding in response to metric changes to the environment

Munn, Robert GK, Caitlin S. Mallory, Kiah Hardcastle, Dane M. Chetkovich, and Lisa M. Giocomo. Entorhinal velocity signals reflect environmental geometry. Nat Neurosci (2020) doi:10.1038/s41593-019-0562-5

Abstract
“The entorhinal cortex contains neurons that represent self-location, including grid cells that fire …

Be the First to comment. Read More

Whether the firing associations of grid cells depend on hippocampal inputs?

Noam Almog, Gilad Tocker, Tora Bonnevie, Edvard Moser, May-Britt Moser, Dori Derdikman. During hippocampal inactivation, grid cells maintain their synchrony, even when the grid pattern is lost. eLife 2019;8:e47147 DOI: 10.7554/eLife.47147

Abstract “The grid cell network in the medial …

Be the First to comment. Read More

Whether the firing associations of grid cells depend on hippocampal inputs?

Noam Almog, Gilad Tocker, Tora Bonnevie, Edvard Moser, May-Britt Moser, Dori Derdikman. During hippocampal inactivation, grid cells maintain their synchrony, even when the grid pattern is lost. bioRxiv 592006; doi: https://doi.org/10.1101/592006

Abstract
The grid cell network in the MEC …

Be the First to comment. Read More

Whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments?

Munn, Robert GK, Caitlin S. Mallory, Kiah Hardcastle, Dane M. Chetkovich, and Lisa M. Giocomo. “Entorhinal velocity signals reflect environmental geometry.” bioRxiv (2019): 671222. doi: https://doi.org/10.1101/671222

Summary
The entorhinal cortex contains neural signals for representing self-location, including grid

Be the First to comment. Read More

How Does the Brain Solve the Computational Problems of Spatial Navigation?

Widloski, John, and Ila Fiete. “How does the brain solve the computational problems of spatial navigation?.” In Space, Time and Memory in the Hippocampal Formation, pp. 373-407. Springer, Vienna, 2014.

Abstract
Flexible navigation in the real world involves …

Be the First to comment. Read More

How are grid cells organized in the MEC?

Gu, Yi, Sam Lewallen, Amina A. Kinkhabwala, Cristina Domnisoru, Kijung Yoon, Jeffrey L. Gauthier, Ila R. Fiete, and David W. Tank. “A map-like micro-organization of grid cells in the medial entorhinal cortex.” Cell 175, no. 3 (2018): 736-750.

Be the First to comment. Read More

Whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments?

Robert G K Munn, Caitlin S Mallory, Kiah Hardcastle, Dane M Chetkovich, Lisa M Giocomo. Entorhinal velocity signals reflect environmental geometry. bioRxiv 671222; doi: https://doi.org/10.1101/671222

Summary
The entorhinal cortex contains neural signals for representing self-location, including grid cells that …

Be the First to comment. Read More

How the sensory environmental information and the self-motion information influence on place and grid cell firing?

Chen, Guifen, Yi Lu, John A. King, Francesca Cacucci, and Neil Burgess. “Differential influences of environment and self-motion on place and grid cell firing.” Nature communications 10, no. 1 (2019): 630.

Abstract

Place and grid cells in the hippocampal formation …

Be the First to comment. Read More

Whether humans can navigate a sensory space informed only by odor cues and how the brain might internalize a representation of two-dimensional olfactory space

Xiaojun Bao, Eva Gjorgieva, Laura K. Shanahan, James D. Howard, Thorsten Kahnt, and Jay A. Gottfried. Grid-like Neural Representations Support Olfactory Navigation of a Two-Dimensional Odor Space. Neuron(2019), https://doi.org/10.1016/j.neuron.2019.03.034 

Grid cells in entorhinal cortex underlie spatial orientation and path …

Be the First to comment. Read More

How to build goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network?

Edvardsen, Vegard. “Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network.” Natural Computing 18, no. 1 (2019): 13-27.

The following content is extracted from Edvardsen 2019.

Edvardsen, Vegard. “Goal-directed navigation based …

Be the First to comment. Read More

How to implement long-range navigation by path integration and decoding of grid cells in a neural network?

Edvardsen, Vegard. “Long-range navigation by path integration and decoding of grid cells in a neural network.” In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4348-4355. IEEE, 2017.

The following content is extracted from Edvardsen 2017.

Neural …

Be the First to comment. Read More

How grid cells generate unambiguous and high-capacity representations of variables in much higher-dimensional space?

Klukas, Mirko, Marcus Lewis, and Ila Fiete. “Flexible representation and memory of higher-dimensional cognitive variables with grid cells.” bioRxiv (2019): 578641.

The following content is from Klukas 2019.

Grid cell representations are simultaneously flexible and powerful yet rigid …

Be the First to comment. Read More