Category: Brain-Inspired Navigation

Robots are learning how to walk like we do

Robots have walked on legs for decades. Today’s most advanced humanoid robots can tramp along flat and inclined surfaces, climb up and down stairs, and slog through rough terrain. Some can even jump.

A report about legged robots on the …

Be the First to comment. Read More

How the brain’s spatial systems organize their representation of 3D space?

The brain’s spatial map is supported by place cells, encoding current location, and grid cells, which report horizontal distance traveled by producing evenly sized and spaced foci of activity (firing fields) that tile the environment surface. Casalia et al. 2019 …

Be the First to comment. Read More

AntBot: desert ants inspired autonomous navigation in outdoor environments

J. Dupeyroux et al. 2019 presents a navigation system inspired by desert ants’ navigation behavior, which requires precise and robust sensory modalities.

They tested several ant-inspired solutions to outdoor homing navigation problems on a legged robot using two optical sensors …

Be the First to comment. Read More

How a simple robotics model of mammal navigation is useful to interpret neurobiological recordings

Place recognition is a complex process involving idiothetic and allothetic information. In mammals, evidence suggests that visual information stemming from the temporal and parietal cortical areas (‘what’ and ‘where’ information) is merged at the level of the entorhinal cortex (EC) …

Be the First to comment. Read More

DeepMind GridCells Code

The DeepMind opens the code of grid cells (Banino et al 2018) via GitHub(https://github.com/deepmind/grid-cells) in Jan. 2019. This package provides an implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published …

Be the First to comment. Read More

Towards Neuromorphic SLAM and Navigation

The latest research Kreiser et al. 2018,  published IROS 2018,  investigated the use of ultra low-power, mixed signal analog/digital neuromorphic hardware for implementation of biologically inspired neuronal path integration and map formation for a mobile robot. 

For further info, please …

Be the First to comment. Read More

How does the brain’s spatial map change when we change the shape of the room?

A latest report about grid cells from Sainsbury Wellcome Centre at UCL. The following is excerpted from the report. 

Our ability to navigate the world, and form episodic memories, relies on an accurate representation of the environment around us. …

Be the First to comment. Read More

The Nobel Prize in Physiology or Medicine 2014 was awarded to John O’Keefe, May-Britt Moser and Edvard I. Moser “for their discoveries of cells that constitute a positioning system in the brain.”

A summary report of the Nobel Prize in Physiology or Medicine 2014 on the www.nobelprize.org 

The following content is excerpted from the reference -The Nobel Prize in Physiology or Medicine 2014. NobelPrize.org. Nobel Media AB 2019. Thu. 10 Jan 2019.

Be the First to comment. Read More

How the brain works on many different levels, from human interactions to the chemistry of neurotransmitters?

Video from: https://vimeo.com/249492053 

Scientists examine the brain and how it works on many different levels, from human interactions to the chemistry of neurotransmitters. This animations compares the scale of the different research subjects.

Made in collaboration with INM-1 of Forschungszentrum …

Be the First to comment. Read More

How your brain encodes location?

A latest report titled ‘The Surprising Relativism of the Brain’s GPS’ by ADITHYA RAJAGOPALAN at Cohen Lab, JOHNS HOPKINS UNIVERSITY, reviewed the brief research history of the Brain’s GPS published in  NAUTILUS

For further info, please read the report …

Be the First to comment. Read More

How 3D grid cells encode 3D physical space in the human brain?

Novel fantastic research about 3D grid cells in the human brain by Dr. Misun Kim and Professor Eleanor A. Maguire in paper Kim et al. 2019 

Misun Kim, Eleanor A. Maguire. Can we study 3D grid codes non-invasively in the

Be the First to comment. Read More

How three-dimensional (3D) direction information is encoded in the human brain?

Novel fantastic research about 3D head direction cells in the human brain by Dr. Misun Kim and Professor Eleanor A. Maguire in paper Kim et al. 2018.

Misun Kim, Eleanor A. Maguire. Encoding of 3D head direction information in the

Be the First to comment. Read More

CogNav-Cognitive Navigation

An issue of Navigation News on Cognitive Navigation. https://rin.org.uk/page/NavigationNews

An article about Cognitive Navigation by Professor Kate Jeffery in this issue.

https://cdn.ymaws.com/rin.org.uk/resource/resmgr/cognav/spatialcognition/cognitivenavigation.pdf

“Cognitive navigation integrates the navigator with their surroundings, in both time and space, and also with other navigators,and …

Be the First to comment. Read More

What if we could design an autonomous flying robot with the navigational and learning abilities of a honeybee?

Some brief introduction about  the project ‘Brains on Board: Neuromorphic Control of Flying Robots’  

What if we could design an autonomous flying robot with the navigational and learning abilities of a honeybee? Such a computationally and energy-efficient autonomous …

Be the First to comment. Read More

How the brain makes a map of space?

A brief review on the neural cells of navigation in the brain by Professor Kate Jeffery.

Please read the slide at https://www.cambridgeconference.com/wp-content/uploads/2017/08/0955-presentation-kate-Jeffery.pdf 

Some snapshot from the report. The neural cells include place cells, head direction cells, grid cells, etc.…

Be the First to comment. Read More