Category: Cognitive Navigation

Towards Neuromorphic SLAM and Navigation

The latest research Kreiser et al. 2018,  published IROS 2018,  investigated the use of ultra low-power, mixed signal analog/digital neuromorphic hardware for implementation of biologically inspired neuronal path integration and map formation for a mobile robot. 

For further info, please …

Be the First to comment. Read More

The Nobel Prize in Physiology or Medicine 2014 was awarded to John O’Keefe, May-Britt Moser and Edvard I. Moser “for their discoveries of cells that constitute a positioning system in the brain.”

A summary report of the Nobel Prize in Physiology or Medicine 2014 on the www.nobelprize.org 

The following content is excerpted from the reference -The Nobel Prize in Physiology or Medicine 2014. NobelPrize.org. Nobel Media AB 2019. Thu. 10 Jan 2019.

Be the First to comment. Read More

How the brain works on many different levels, from human interactions to the chemistry of neurotransmitters?

Video from: https://vimeo.com/249492053 

Scientists examine the brain and how it works on many different levels, from human interactions to the chemistry of neurotransmitters. This animations compares the scale of the different research subjects.

Made in collaboration with INM-1 of Forschungszentrum …

Be the First to comment. Read More

How your brain encodes location?

A latest report titled ‘The Surprising Relativism of the Brain’s GPS’ by ADITHYA RAJAGOPALAN at Cohen Lab, JOHNS HOPKINS UNIVERSITY, reviewed the brief research history of the Brain’s GPS published in  NAUTILUS

For further info, please read the report …

Be the First to comment. Read More

How three-dimensional (3D) direction information is encoded in the human brain?

Novel fantastic research about 3D head direction cells in the human brain by Dr. Misun Kim and Professor Eleanor A. Maguire in paper Kim et al. 2018.

Misun Kim, Eleanor A. Maguire. Encoding of 3D head direction information in the

Be the First to comment. Read More

CogNav-Cognitive Navigation

An issue of Navigation News on Cognitive Navigation. https://rin.org.uk/page/NavigationNews

An article about Cognitive Navigation by Professor Kate Jeffery in this issue.

https://cdn.ymaws.com/rin.org.uk/resource/resmgr/cognav/spatialcognition/cognitivenavigation.pdf

“Cognitive navigation integrates the navigator with their surroundings, in both time and space, and also with other navigators,and …

Be the First to comment. Read More

What if we could design an autonomous flying robot with the navigational and learning abilities of a honeybee?

Some brief introduction about  the project ‘Brains on Board: Neuromorphic Control of Flying Robots’  

What if we could design an autonomous flying robot with the navigational and learning abilities of a honeybee? Such a computationally and energy-efficient autonomous …

Be the First to comment. Read More

How the brain makes a map of space?

A brief review on the neural cells of navigation in the brain by Professor Kate Jeffery.

Please read the slide at https://www.cambridgeconference.com/wp-content/uploads/2017/08/0955-presentation-kate-Jeffery.pdf 

Some snapshot from the report. The neural cells include place cells, head direction cells, grid cells, etc.…

Be the First to comment. Read More

Brain-inspired dynamic path replanning in autonomous navigation for robotic swarms

What do animal brains have in common with a swarm of robots? 

In an effort to improve robotic swarming algorithms, an interdisciplinary team of scientists will study how the brain allows an animal to navigate and change its route while …

Be the First to comment. Read More

Animals Teach Robots to Find Their Way

By Chris Edwards
Communications of the ACM, August 2018, Vol. 61 No. 8, Pages 14-16. 10.1145/3231168

Mammalian research has underpinned the key models used in robot development. Analogs of neural networks found in the rat’s brain underpin the most widespread

Be the First to comment. Read More

How landmark and self-motion cues combine during navigation to generate spatial representations?

The excerpt note is about how combine landmark and self-motion cues for navigation from Campbell et al., 2018.

Campbell, Malcolm G., Samuel A. Ocko, Caitlin S. Mallory, Isabel I. C. Low, Surya Ganguli & Lisa M. Giocomo. Principles governing the

Be the First to comment. Read More

How do bats navigate in 3D environments?

The excerpt note is about bat navigation from Yovel & Ulanvosky 2017.

Yovel, Yossi, and Nachum Ulanvosky. “1.18 Bat Navigation.” Learning and Memory: A Comprehensive Reference (2017): 333.

Navigation, the capacity to plan and execute a goal-directed path,

Be the First to comment. Read More

Biologically inspired visual odometry based on the computational model of grid cells

A biologically inspired visual odometry based on the computational model of grid cells, which is developed based on the the source code of the computational model of grid cells: http://clm.utexas.edu/fietelab/code.htm, and LIBVISO2: http://www.cvlibs.net/software/libviso/, by Huimin Lu, Junhao Xiao, …

Be the First to comment. Read More

How to unlock the secrets of 3D navigation in the brain?

A Nature  News Feature report the research story of 3D navigation in  Nachum Ulanovsky lab. Titled “100 bats and a long, dark tunnel: one neuroscientist’s quest to unlock the secrets of 3D navigation” published in Nature News at …

Be the First to comment. Read More

Path Integration in a Continuous Attractor Network Model

The excerpt note is about path integration with continuous attractor network according to McNaughton B. L., et al., 2006.

McNaughton, Bruce L., Francesco P. Battaglia, Ole Jensen, Edvard I. Moser, and May-Britt Moser. “Path integration and the neural basis

Be the First to comment. Read More