3D Motion Estimation. Oct.10 ,2018. By Prof. Ioannis Pitas, Aristotle University of Thessaloniki.…
Some brief introduction about the project ‘Brains on Board: Neuromorphic Control of Flying Robots’
What if we could design an autonomous flying robot with the navigational and learning abilities of a honeybee? Such a computationally and energy-efficient autonomous …
A brief review on the neural cells of navigation in the brain by Professor Kate Jeffery.
Please read the slide at https://www.cambridgeconference.com/wp-content/uploads/2017/08/0955-presentation-kate-Jeffery.pdf
Some snapshot from the report. The neural cells include place cells, head direction cells, grid cells, etc.…
What do animal brains have in common with a swarm of robots?
In an effort to improve robotic swarming algorithms, an interdisciplinary team of scientists will study how the brain allows an animal to navigate and change its route while …
By Chris Edwards
Communications of the ACM, August 2018, Vol. 61 No. 8, Pages 14-16. 10.1145/3231168
Mammalian research has underpinned the key models used in robot development. Analogs of neural networks found in the rat’s brain underpin the most widespread …
The excerpt note is about how combine landmark and self-motion cues for navigation from Campbell et al., 2018.
Campbell, Malcolm G., Samuel A. Ocko, Caitlin S. Mallory, Isabel I. C. Low, Surya Ganguli & Lisa M. Giocomo. Principles governing the …
The excerpt note is about bat navigation from Yovel & Ulanvosky 2017.
Yovel, Yossi, and Nachum Ulanvosky. “1.18 Bat Navigation.” Learning and Memory: A Comprehensive Reference (2017): 333.
Navigation, the capacity to plan and execute a goal-directed path, …
Brain Inspired Navigation Blog
New discovery worth spreading on brain-inspired navigation in neurorobotics and neuroscience